報(bào)告題目:可壓縮流體方程的適定性及極限行為
報(bào)告人:黃飛敏
報(bào)告時(shí)間:2026年1月27日10:00-12:00
報(bào)告地點(diǎn):燕山校區(qū)3號(hào) 實(shí)驗(yàn)樓3306會(huì)議室
報(bào)告摘要:在描述流體的運(yùn)動(dòng)時(shí),當(dāng)考慮不同的物理尺度時(shí)可以得到許多著名的運(yùn)動(dòng)方程。在宏觀(guān)層次,最著名的方程是Euler 和Navier-Stokes 方程;在微觀(guān)層次,相應(yīng)的運(yùn)動(dòng)模型由描述單個(gè)粒子運(yùn)動(dòng)耦合的Newton 方程構(gòu)成;兩者之間的介觀(guān)模型是統(tǒng)計(jì)物理中的基本方程,即Boltzmann方程。 本報(bào)告將首先回顧這些方程之間的研究背景及與希爾伯特第六問(wèn)題的聯(lián)系,隨后將介紹這些方程適定性問(wèn)題的若干最新進(jìn)展,特別是關(guān)于可壓縮流體Riemann問(wèn)題的長(zhǎng)時(shí)間穩(wěn)定性及流體動(dòng)力學(xué)極限等重要問(wèn)題。
報(bào)告人簡(jiǎn)介:黃飛敏,華羅庚首席研究員,現(xiàn)任中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院副院長(zhǎng)、中國(guó)數(shù)學(xué)會(huì)黨委書(shū)記暨副理事長(zhǎng),中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)會(huì)士,國(guó)家杰出青年基金獲得者。1991年畢業(yè)于華中科技大學(xué)數(shù)學(xué)系,1994年在中國(guó)科學(xué)院武漢數(shù)學(xué)物理研究所獲碩士學(xué)位,1997年在中國(guó)科學(xué)院應(yīng)用數(shù)學(xué)研究所獲博士學(xué)位。曾獲2004年美國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)杰出論文獎(jiǎng),2013年國(guó)家自然科學(xué)獎(jiǎng)二等獎(jiǎng)等重要獎(jiǎng)項(xiàng),2013年入選國(guó)家杰出青年科學(xué)基金20周年巡禮。主要從事非線(xiàn)性偏微分方程的理論研究,涉及可壓縮歐拉方程、可壓縮納維-斯托克斯方程、玻爾茲曼方程等解的適定性、流體極限等,發(fā)表學(xué)術(shù)論文100多篇并被廣泛引用,現(xiàn)任《Communications in Mathematical Sciences》、《Nonlinear Analysis: Real World Applications》、《中國(guó)科學(xué)數(shù)學(xué)》、《應(yīng)用數(shù)學(xué)學(xué)報(bào)》、《數(shù)學(xué)物理學(xué)報(bào)》等國(guó)內(nèi)外學(xué)術(shù)雜志編委。